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� Background
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� Applications
� Summary



Distributed Data vs Shared Memory

Distributed Data:
Data is explicitly associated with each processor, accessing data 

requires specifying the location of the data on the processor and 
the processor itself. 
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Data locality is 
explicit but data 
access is complicated. 
Distributed computing 
is typically 
implemented with 
message passing 
(e.g. MPI)



Distributed Data vs Shared Memory 
(Cont).

Shared Memory:
Data is an a globally accessible address space, any processor can 

access data by specifying its location using a global index

Data is mapped out in 
a natural manner 
(usually 
corresponding to the 
original problem) and 
access is easy. 
Information on data 
locality is obscured 
and leads to loss of 
performance.
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Global Arrays

single, shared data structure/ 
global indexing

e.g., access A(4,3) rather than 
buf(7) on task 2

Physically distributed data

Distributed dense arrays that can be accessed through a 
shared memory-like style

Global Address Space



Global Arrays (cont.)

� Shared memory model in context of 
distributed dense arrays

� Much simpler than message-passing for 
many applications

� Complete environment for parallel code 
development

� Compatible with MPI
� Data locality control similar to distributed 

memory/message passing model
� Extensible
� Scalable



Remote Data Access in GA
Message Passing:

identify size and location of data 
blocks

loop over processors:
if (me = P_N) then

pack data in local message 
buffer
send block of data to 
message buffer on P0

else if (me = P0) then
receive block of data from 
P_N in message buffer
unpack data from message 
buffer to local buffer

endif
end loop

copy local data on P0 to local buffer

Global Arrays:

NGA_Get(g_a, lo, hi, buffer, ld);

Global Array 
handle

}

Global upper 
and lower 
indices of data 
patch

Local buffer 
and array of 
strides

P0

P1

P2

P3



Data Locality

What data does a processor own?

NGA_Distribution(g_a, iproc, lo, hi);

Where is the data?

NGA_Access(g_a, lo, hi, ptr, ld)

Use this information to organize calculation so that 
maximum use is made of locally held data



Global Array Model of Computations
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Example: Matrix Multiply

local buffers on the 
processor

global arrays 
representing 
matrices

•

•

=

=

getput

dgemm



Matrix Multiply 
(a better version)

local buffers on the 
processor

more scalable!
(less memory, 
higher parallelism)•

•

=

=

getatomic accumulate

dgemm



One-sided Communication 

message passing
MPI

P1P0
receive send

P1P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Message Passing:
Message requires cooperation  
on both sides. The processor 
sending the message (P1) and 
the processor receiving the 
message (P0) must both 
participate.

One-sided Communication:
Once message is initiated on 
sending processor (P1) the 
sending processor can 
continue computation. 
Receiving processor (P0) is 
not involved.



Structure of GA

Message Passing
Global operations

ARMCI
portable 1-sided
communication

put,get, locks, etc

distributed arrays layer
memory management, index translation

system specific interfaces
LAPI, GM/Myrinet, threads, VIA,..

Global Arrays 
and MPI are 
completely 
interoperable. 
Code can 
contain calls 
to both 
libraries.

Fortran 77 C C++ Babel

F90

Python

JavaApplication 
programming 
language interface



Core Capabilities

� Distributed array library
� dense arrays 1-7 dimensions
� four data types: integer, real, double precision, double complex
� global rather than per-task view of data structures 
� user control over data distribution: regular and irregular

� Collective and shared-memory style operations
� ga_sync, ga_scale, etc
� ga_put, ga_get, ga_acc
� nonblocking ga_put, ga_get, ga_acc

� Interfaces to third party parallel numerical libraries
� PeIGS, Scalapack, SUMMA, Tao

⌧ example: to solve a linear system using LU factorization
call ga_lu_solve(g_a, g_b)

instead of
call pdgetrf(n,m, locA, p, q, dA, ind, info)
call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)



Interoperability and Interfaces

� Language interfaces to Fortran, C, C++, Python
� Interoperability with MPI and MPI libararies

� e.g., PETSC, CUMULVS

� Explicit interfaces to other systems that expand 
functionality of GA
�ScaLAPACK-scalable linear algebra software
�Peigs-parallel eigensolvers
�TAO-advanced optimization package



Application Areas

thermal flow 
simulation

Visualization and image 
analysis 

electronic structure glass flow 
simulation

material sciences molecular dynamics

Others: financial security forecasting, astrophysics, geosciences

biology



Lennard-Jones Simulation (MD)

� Molecular Dynamics (MD) 
Simulation:
�Simulates particle systems

⌧Solids, liquids, gases
⌧Biomolecules on Earth
⌧Motion of stars, etc.

� GA Implementation:
�Based on force decomposition
�Dynamic Load Balancing 
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MD Performance Results
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Energy Optimization GA/TAO

� LJMD (Lennard Jones Molecular Dynamics) 
code 
� computes the function and gradients of the 

Lennard-Jones clusters (Molecular 
Conformation) problem 

�Uses GA for communication
�Uses TAO optimization solvers

� GA/TAO Interoperability
�GA provides TAO the core linear algebra 

support for manipulating vectors, matrices, 
and linear solvers

� GA Distributed Array Descriptor Factory 
(GA-DADF) provides array descriptors to 
Visualization component for visualizing 
molecules



GA/TAO Interaction

Application Driver
(compute xo)

Application Driver
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TAOTAO
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Common Component Architecture 
(CCA)

� Molecular Dynamics of a Lennard-Jones System
� Components Used

⌧LJMDModel                  - Lennard Jones Model
⌧GA_Classic                   - Native GA Component 
⌧GA_DADFactory           - GA’s Distributed Array Factory 
⌧GA_LAFactory              - Linear Algebra based on GA 
⌧Petsc_LinearAlgebra   - Linear Algebra based on Petsc 
⌧TaoSolver - Optimization Component 
⌧Visualization                 - Viz Component (OpenGL) 
⌧Driver                             - Driver Component 



CCA Wiring Diagram



Non-Blocking Communication

� New functionality in GA version 3.3
� Allows overlapping of data transfers and computations

� Technique for latency hiding 

� Nonblocking operations initiate a communication call and then 
return control to the application immediately

� operation completed locally by making a call to the wait routine 



SUMMA Matrix Multiplication

A B C=A.B

Computation 

Comm.
(Overlap)

Issue NB Get A and B blocks
dodo (until last chunk)

issue NB Get to the next blocks
wait for previous issued call
compute A*B (sequential dgemm)
NB atomic accumulate into “C”      

matrix
donedone

Advantages:Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication

- latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancingpatch matrix multiplication

=



SUMMA Matrix Multiplication:
Improvement over MPI

Non-Blocking Communication Performance
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Lattice Boltzmann Simulation
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normal global array
global array with ghost cells

Ghost Cells

Operations:

NGA_Create_ghosts      - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to “local” ghost cell elements
NGA_Nbget_ghost_dir - nonblocking call to update ghosts cells



Ghost Cell Update

Automatically update ghost 
cells with appropriate data 
from neighboring 
processors. A multiprotocol
implementation has been 
used to optimize the 
update operation to match 
platform characteristics.



Ghost Cell Application
Performance
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Mirrored Arrays

� Create Global Arrays that are replicated between SMP 
nodes but distributed within SMP nodes

� Aimed at fast nodes connected by relatively slow 
networks (e.g. Beowulf clusters)

� Use memory to hide latency
� Most of the operations supported on ordinary Global 

Arrays are also supported for mirrored arrays
� Global Array toolkit augmented by a merge operation 

that adds all copies of mirrored arrays together
� Easy conversion between mirrored and distributed 

arrays



Mirrored Arrays (cont.)

Distributed Mirrored Replicated



NWChem DFT Calculation

http://www.emsl.pnl.gov/docs/nwchem



Disk Resident Arrays
� Extend GA model to disk

�system similar to Panda (U. Illinois) but higher level 
APIs

� Provide easy transfer of data between N-dim 
arrays stored on disk and  distributed arrays 
stored in memory

� Use when
�Arrays too big to store in core
�checkpoint/restart
�out-of-core solvers

global array

disk resident array



High Bandwidth Read/Write

Disk Resident Array

Disks

Disk Resident Arrays 
automatically 
decomposed into 
multiple files



Image Processing Application
PiCEIS

IKONOS ISAT Texture (George He)

Parallel Computational Environment for Imaging Science

erjurrus@pnl.gov



Scalable Performance of DRA

file systems
I/O buffers

SMP node
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Sparse data managment

� Sparse arrays can be implemented with
�1-dimensional global arrays

⌧Nonzero elements, row and/or index arrays

�Set of new operations follow Thinking Machines CMSSL
⌧Enumerate
⌧Pack/unpack
⌧Binning (NxM mapping)
⌧2-key binning/sorting functions 
⌧Scatter_with_OP, where OP={+,min,max}
⌧Segmented_scan_with_OP, where OP={+,min,max,copy}

� Adopted in NWPhys/NWGrid AMR package
http://www.emsl.pnl.gov/nwgrid



Related Programming Tools

� Co-Array Fortran
�Distributed Arrays
�One-Sided Communication
�No Global View of Data

� UPC
�Model Similar to GA but only applicable to C programs
�Global Shared Pointers could be used to implement GA 

functionality
⌧C does not really support multi-dimensional arrays

� High level functionality in GA is missing from these 
systems



Summary

� The idea has proven very successful
�efficient on a wide range of architectures

⌧core operations tuned for high performance

�library substantially extended but all original (1994) APIs 
preserved

�increasing number of application areas

� Supported and portable tool that works in real 
applications

� Future work
�Fault tolerance



Major Milestones

� 1994 - 1st public release of GA
� 1995 - Metacomputing (grid) extensions of GA
� 1996 - DRA, parallel I/O for GA programs developed
� 1997 - development of ARMCI started 
� 1998 - GA rewritten to use ARMCI
� 1999 - GA 3.0 released, n-dimensional arrays
� 2000 - periodic one-sided operations
� 2001 - support for sparse data management
� 2002 - ghost cell operations, n-dim DRA
� 2003 – mirrored arrays, improved matrix multiply, non-

blocking get operations



Source Code and More
Information

� Version 3.3 available in beta release
� Homepage at http://www.emsl.pnl.gov:2080/docs/global/
� Platforms (32 and 64 bit)

� IBM SP
� Cray T3E, SV1, X1
� Linux Cluster with Ethernet, VIA, Myrinet, Infiniband, or Quadrics
� Solaris
� Fujitsu
�Hitachi
�NEC
�HP
�Windows


